

PRECISION AGRICULTURE: BIOFERTILIZATION

29 JUNE, LISBON, PORTUGAL

Dr. Ir. Muhammad A. Munnaf

Postdoctoral researcher Precision SCORing group Department of Environment

2

PRECISION AGRICULTURE

PRECISION AGRICULTURE

 PA is a management strategy that gathers, processes and analyzes temporal, spatial and individual data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production [Jan 2021]

Image from John Deere/Land-Data Eurosoft; Dana and Stuart, (2023)

WHY PA?

In-field soil heterogeneity affects crop productivity, nutrients use & environment Heterogeneity should be managed accordingly i.e., variable rate N, P, K,

Variable inputs

BNF, biological nitrogen fixation; N, nitrogen.

PA CYCLE

Wiecha et al., (2022)

Sensing

Proximal On-line Remote

Modelling

Data driven Fusion Geo-statistical Mechanistic

Control Application

Tillage Seeding Fertilization Pesticide Herbicide Irrigation Selective harvest

.

On-line

MODELING

Predictive

Machine learning

- RF
- SVM
- PLSR
- Xgb
-

Spiking

- LW-PLSR
- EW-PLSR

Deep learning

- CNN
- BPNN
- RNN
- AE-NN

Transfer learning

- EPO
- OSC
- DS
- PDS
- CWT

Fusion Multivariate • PLSR-BPNN • PLSR-CNN • PCA-CNN • Ensemble • Concatenation Geostatistical • Cokriging • Clustering

- AquaCrop
- APSIM
- InfoCrop
- Wofost

python MATLAB R Jupyter Visual Studio Code

DATA FUSION

Single sensor complements information to multiple sensors A big challenge in synchronizing data structures and sampling supports

GHENT UNIVERSITY

(Feng et al., 2020)

FUSION FOR MZ

Information layers

VARIABLE DOSES

Kings	 Feeding the rich
Robin Hood	 Feeding the poor
Marginal Robin Hood	 Feeding the poor marginally
Sufficiency index	Need based

PRECISION CONTROLS

Map-based technology is ready to implement, rest requires improvements

Limited to soil fertility data

Sensor-based

Limited to **crop** vegetation index

Map-sensor-based

CONTROL PROTOCOL

ISOBUS ISO 11783 is a SAE J1939 based communication protocol for the agricultural equipment. Also recognizable as "Tractors and machinery for agriculture and forestry – Serial control and communications data network". On-board computer allows tractor's and implements interacting with one another. ISO 11783 protocol was originally released in 2001.

FUNCTIONALITY

ISOBUS Universal Terminal can render numerous implement-specific displays superfluous.

Tractor Electronic Control Unit provides tractor data to other ISOBUS devices, such as forward speed or PTO speed or rear hitch position. In this way, for example, an implement can apply fertilizer depending on the driving speed provided by TECU.

ECU

ECU rests on the implement that makes the implement smart. It stores all settings defined through UT. It generally contains the control layers and electronics needed to control certain components such as boom valve.

To connect additional elements, such as a joystick or switchbox to the ISOBUS. Once connected, implement can be operated by the AUX device instead of ISOBUS Universal Terminal.

ISOBUS CLASSES

Class 2 is to control implements.

Implement ECU AUX-N

Class 3 is to control implement and tractor by each other.

UNIVERSAL TERMINAL

TOUCH800 terminal

Connector to ISOBUS

MULTI-SENSOR PLATFORM

On-line sensing platform

VIS-NIR SPECTROSCOPY

22

REFERENCE ANALYSIS

- -Fresh sample
- -Cleaned from debris
- -Quartering & mixing well
- -Analyzing soil pH, OC, P, K, Mg, Ca, Na...
- -MC (Oven dry)

STEPS TO FOLLOW

MULTIVARIATE CALIBRATION

Partial least squares regression (PLSR)

RMSE: root mean square error (prediction) R²: coefficient of determination RPD: residual of prediction deviation, and SD: standard deviation

PLSR was found to be one of the best performing modelling technique for on-line measurement. (Kuang et al., 2015)

SATELLITE REMOTE SENSING

$NDVI = \frac{NIR - RED}{NIR + RED}$

WITHIN-FIELD FERTILITY

Statistics	pH_H2O	pH_CaC I2	EC	Sand	Clay	Silt	Moisture	ОМ	TN	C/N	Phos	к	Са	Mg	S	В
Mean	6.38	6.10	0.53	75.62	14.97	9.42	2.00	1.43	0.07	15.70	241.72	230.02	744.40	316.84	47.59	0.57
Standard Error	0.05	0.04	0.03	0.59	0.41	0.55	0.06	0.02	0.00	0.40	9.10	6.94	32.42	9.28	2.98	0.03
Median	6.40	6.10	0.44	75.00	15.00	9.00	1.88	1.38	0.06	14.50	229.50	218.00	690.50	298.50	40.85	0.48
Standard Deviation	0.47 O	0.44	0.28	5.94	4.06	5.53	0.62	0.25	0.01	4.04	90.97	69.41	324.19	92.79	29.82	0.28
Sample Variance	0.22	0.20	0.08	35.29	16.47	30.56	0.39	0.06	0.00	16.36	8275.80	4818.38	105096.91	8609.15	889.03	0.08
Kurtosis	0.73	0.70	1.90	-0.39	1.09	0.13	0.58	1.23	19.09	1.44	-0.23	0.92	51.29	1.61	2.37	39.58
Skewness	-0.47	-0.66	1.34	-0.02	-0.07	0.57	0.55	1.04	3.57	0.93	0.52	0.88	6.29	1.05	1.29	5.34
Range	2.50	2.40	1.39	28.00	23.00	26.00	3.71	1.32	0.09	23.00	384.10	372.80	3060.00	520.00	162.50	2.36
Minimum	4.90	4.70	0.18	59.00	3.00	0.00	0.27	1.00	0.06	9.00	82.90	89.20	414.00	169.00	12.50	0.40
Maximum	7.40	7.10	1.57	87.00	26.00	26.00	3.98	2.32	0.15	32.00	467.00	462.00	3474.00	689.00	175.00	2.76
Count	100	100	100	100	100	100.00	100	100	100	100	100	100	100	100	100	100

Soil attributes	R2		RMSE		MAE		RPD		RPIQ		nComp
	Cal	Val	Cal	Val	Cal	Val	Cal	Val	Cal	Val	
pH_H2O	0.72	0.50	0.24	0.34	0.19	0.27	1.92	1.44	2.70	1.18	7
pH_CaCl2	0.79	0.68	0.26	0.29	0.20	0.23	2.17	1.79	3.04	2.25	6
Sand	0.84	0.74	2.90	2.98	2.23	2.42	2.50	2.01	5.0	3.02	4
Clay	0.70	0.70	1.61	1.57	1.31	1.44	1.83	2.04	2.48	2.55	
Silt	0.71	0.62	3.61	3.54	2.81	3.05	1.88	1.65	3.46	2.54	4
MC	0.55	0.41	0.51	0.54	0.44	0.44	1.49	1.32	2.38	1.05	5
OM	0.94	0.74	0.07	0.15	0.05	0.12	4.05	2.02	5.93	1.96	RF
Р	0.62	0.70	59.04	39.93	46.47	30.36	1.63	1.86	2.21	2.63	3
Mg	0.73	0.73	37.89	48.64	29.36	34.39	1.95	2.06	2.64	2.24	6
S	0.81	0.58	15.06	22.44	11.58	18.47	2.29	1.58	4.51	1.15	7
В	0.69	0.65	0.09	0.10	0.07	0.08	1.81	1.76	2.74	1.65	

SOIL + CROP MAPS

GHENT

MANAGEMENT ZONE

Clustering based fusion of soil and crop data

Vis-NIRS, visible-near-infrared reflectance spectroscopy; NDVI, normalised difference vegetation index; OC, organic carbon; P, phosphorus; K, potassium; Mg, magnesium; Ca, calcium; Na, sodium; MC, moisture content; CEC, cation exchange capacity.

MANAGEMENT ZONE

GHENT C:\Users\mmunnaf\OneDrive - UGent\Documents\Research\Experiments\Lisbon\data\Model_15NOV2022\MZ_2023 UNIVERSITY

APPLICATION MAP

7 treatments with 3 replications

- 1. URA: Uniform rate application
- 2. VRK_S: Variable rate synthetic NPK by Kings
- 3. VRR_S: Variable rate synthetic NPK by Robin Hood
- 4. VRMR_S: Variable rate synthetic NPK by Marginal Robin Hood
- 5. VRK_B: Variable rate bio + NPK by Kings
- 6. VRR_B: Variable rate bio + NPK by Robin Hood
- 7. VRMR_B: Variable rate bio + NPK by Marginal Robin Hood

EXPECTED RESULTS

PREVIOUS STUDY

SITE-SPECIFIC MANURE APPLICATION

ECONOMIC AND ENVIRONMENTAL BENEFIT

TREAT	AREA (Ha)	Manure t/ha	COST PER HECTARE (EUR)	YIELD (T/Ha)	Output (EUR)	PROFIT PER HECTARE (EUR)	COMPARISO N PER HECTARE (EUR)	PROFIT PER TREATMENT (EUR)	SIMULATION PROFIT PER FIELD (EUR)
UR	3.40	35	-16.50	12.52	1903.04	1919.54		6523.55	18392.29
Kings VR1	3.14	36.9	-13.24	12.81	1946.36	1959.60	40.06	6156.83	18776.14
R. Hood VR2	3.04	32.52	-23.94	12.71	1931.92	1955.86	36.32	5948.24	18740.32

TREAT	Area (Ha)	Total N per entire area (kg/ha)	N applied (kg/ha)	Compariso n (kg/ha)	Simulated N Kg / field	Comparison simulated N (kg/field)	Total P per entire area (Kg/ha)	P applied (Kg/ha)	Comparis on (kg/ha)	Simulated P Kg / field	Compariso n simulated P (kg/field)
UR	3.40	983.87	289.50		2773.88		178.42	52.50		503.03	
Kings VR1	3.14	925.96	294.71	5.21	2823.84	49.96	170.07	54.13	1.63	518.65	15.61
R. Hood VR2	3.04	844.22	277.59	-11.91	2659.78	-114.09	148.35	48.78	-3.72	467.38	-35.65

SITE-SPECIFIC POTATO SEEDING

COST-BENEFIT ANALYSIS

UNIVERSITY

SITE-SPECIFIC NITROGEN

MZ, STRIPS EXPERIMENT, YIELD MAPS 2019

UNIVERSITY

COST-BENEFIT AND ENVIRONMENTAL ANALYSIS

ECONOMOMIC BENEFIT

Field	Treatment	AREA (Ha)	Cost Per Hectare (Eur)	YIELD (T/Ha)	Output (EUR)	Profit Per Hectare (Eur)	UR-VR Profit difference (Eur/Ha)	Profit Per Treatment (Eur)	Simulation Profit Per Field (Eur)
	UR	6.701	86.405	10.460	1673.600	1586.246		10629.364	26700.029
GROOTI AND	Total VR1	4.741	85.088	10.482	1677.120	1591.097	+4.851	7543.418	26781.674
CITCOTEATE	Total VR2	5.390	69.605	10.456	1673.013	1602.643	+16.397	8638.628	26976.029
	UR	4.983	81.175	8.040	1222.08	1140.90		5684.70	15844.45
KOUTER	Total VR1	4.291	92.658	8.966	1362.83	1270.17	+129.26	5449.90	17639.68
ROUTER	Total VR2	4.614	73.350	8.967	1363.03	1289.68	+148.78	5951.00	17910.65

ENVIRONMENTAL BENEFIT

Field	Treatment	Area (Ha)	Fertilizer Used (N units)	Yield (t/Ha)	Units/Ha	UR-VR N difference (N units per Ha)	Simulation Total N Units Per Field	Savings of Simulation per Field Compared with UR
	UR	6.701	924.732	10.460	138		2322.845	
GROOTI AND	Total VR1	4.741	644.295	10.482	135.898	-2.102	2287.465	-35.38
	Total VR2	5.390	599.229	10.456	111.1693	-26.831	1871.226	-451.619
	UR	4.98	622.83	8.040	125		1735.952	
KOUTER	Total VR1	4.29	601.65	8.969	140.223	15.222	1947.354	211.401
	Total VR2	4.61	540.86	8.967	117.213	-7.786	1627.822	-108.13

GHENT

UNIVERSITY

CONCLUSIONS

PA is an effective means to manage within-field heterogeneity through resource use optimisation

PA is a proven approach to increase farm productivity & profitability in sustainable means.

Data from single sensor is often insufficient, hence PA requires multi-layers information

Mapping within-field variation asks for a proper data fusion prior to accurate MZ delineation

PA necessitates intensive data handling and powerful processing algorithms

PA practice at farmers level is limited, requiring extensive proof of evidences

