

Fungi - a nature-based solution

Biofertilizers And Precision Agriculture

Inês Ferreira

23 June 2023

Fungi as endogenous resources

Fungi as endogenous resources

Plants nurture a whole world of creatures in the soil, that in return feed and protect the plants.

This diverse community of living organisms keeps the soil healthy and fertile.

This vast world constitutes soil biodiversity and determines the main biogeochemical processes that make life possible on Earth.

Fungi - What are they?

Mushrooms are the **fruitbodies** of some fungi.

Endogenous resources

Biofertilizers and precision agriculture

Relevance in the current scenario

It is necessary to find new sustainable forms of food production and innovate in green chemistry

Traditional commercial exploitation

WILD MUSHROOMS

Seasonal product

CULTIVATED MUSHROOMS

Continuous production

Mainstream activities

Ectomycorrhizal species authorised for trade in EU countries, commercialised product and market prices

	N° of FU	Commercialized product		Market prices			
ECM species	countries ^a	t/year ^b	Period	€/kg ^b	Period	Country	References
Boletus edulis	14	25,000	2014	12	2017	Spain	Bonet et al. (2020); Baars (2017)
		400	1978-2016	7.7	1978-2016	Finland	Tahvanainen et al. (2019)
Cantharellus cibarius	14	2,500	2007	20	2003	Spain	Bonet et al. (2020); de Román and Boa (2004)
		12.6	1978-2016	13.8	1978-2016	Finland	Tahvanainen et al. (2019)
Hydnum repandum	12	700	n.a	9.9	2002	Spain	Bonet et al. (2020); de Román and Boa (2004)
Lactarius deliciosus	14	6,800	1990-1998	13	2002	Spain	Bonet et al. (2020); de Román and Bo, (2004)
		100	1978-2016	4.0	1978-2016	Finland	Tahvanainen et al. (2019)
Terfezia claveryi	2	670	2001-2015	60	n.a.	Spain	Andrino et al. (2019); Oliach et al. (2020)
Tuber aestivum	8	30	2016	50	n.a	Spain	Oliach et al. (2020)
Tuber brumale	6	0.5	2015	120	n.a	Spain	Oliach et al. (2020)
Tuber melanosporum	9	47	2013-2017	550	2016-2017	Spain	Oliach et al. (2020)

Abbreviations: €/kg, Euros per kilogramme; n.a., data not available; t/year, tonnes per year.

^aData from Peintner et al. (2013).

^bMaximum values registered.

9

New Applications

Applications:

- Production of *wild mushrooms*
- Improvement of *biomass* production
- Abiotic stress mitigation

Ectomycorrhizal structures

Organic Matter NH_4^+ Microbial Peptides Amino acids Enzymes H_2PO_4 Photosynthesis b) Dead ECM organic carbon a) ECM Decomposition Soi - carbon a) organic acids c) Mineral source

Ectomycorrhizal Fungi

Ectomycorrhizal Fungi volatiles

1-octen-3-ol

Article

Journal of Fungi

The Potential of Ectomycorrhizal Fungi to Modulate below and Aboveground Communities May Be Mediated by 1-Octen-3-ol

Inês Ferreira 边, Teresa Dias *🕩 and Cristina Cruz 💿

MDPI

≠ management

guidelines and practices

NURSERY PRODUCTION

Ectomycorrhizal Fungi and European Green Deal

The European

> Green Deal

ECM Fungi contributions

Biodiversity

Soil quality

CO₂ Sequestration

Nutrient cycle

Plant health

Food resources

Biocompounds

Nutritional proprieties

Micotourism

Bioeconomy

Cultural values

Rural Development

New EU Forest Strategy 2030

Forest resilience to climate changes

Increase carbon sequestration in soils and forests

Restoration of degraded ecosystems

Promoting the bioeconomy and simultaneously preserving biodiversity

Supporting sustainable food production

New target to restore and expand EU carbon sinks by 2030:

*C0,eq

Applications:

Production of wild mushrooms, improvement of biomass production and abiotic stress mitigation

New Applications

Crops

Applications: Production of animal feed

Applications: In Biofertilizers (AM Fungi) and phytohormones promoting plant growth and enhanced crops

SUBSTRATE

FEED

FERTILIZERS

Production

Applications:

- Introduction of *novel species* for food or other applications
- **Biocompounds** extraction from byproducts

25 species cultivated worldwide

Applications:

- Biofertilizers (AM Fungi)
- Spent Mushroom substrate as plant substrate
- Mushroom metabolites

Organic pots made of residual substrate from Ganoderma lucidum cultivation

Elsakhawy et al. 2022

Conclusion

- Ectomycorrhizal and Saprophytic fungi → **BIOECONOMY**
 - Contribute to CIRCULAR ECONOMY
- CAP (Common Agricultural Policy) and the 2030 Forest Strategy
 - Social, environmental and economic sustainability in agriculture and forestry
 - Promote bioeconomy in rural areas.
- Fungi → Nature-based solutions for Europe's sustainable development
 - European Green Deal and integrate them into the strategies:
 - Farm to Fork, Biodiversity Strategy 2030, Climate Law, CAP
- New cultivation methodologies
 - *Mitigating impacts* and species adaptation *to climate change*
 - Achieve carbon neutrality

More than 10,000 known species worldwide!

Thank you

Biofertilizers and Precision Agriculture

Inês Ferreira

23 June 2023